我们可以使用外延公理来证明只有一个这样的集合。因为它是唯一的,我们可以简单名之为空集,并将其标记为 {} 或
∅
{\displaystyle \varnothing }
。因此这个公理的本质是:
存在一个空集。
空集公理一般被认为是无可争议的,它或它的等价命题出现在任何可替代的集合论的公理化中。
在 ZF 的某些陈述版本中,空集公理实际上在无穷公理中是重复的。换句话说,有不预设空集存在的另一种公理版本。还有,以一常量符号表示空集的话,借此可以把其他 ZF 公理重写成更简洁的版本;那么无穷公理也会用到这个符号而不要求它是空的,尽管需要空集公理来表明它实际上是空的。
而且,在那些不包含无穷集合的集合论中,空集公理仍是需要的。就是说,使用分离公理模式,声称任何集合存在的任何公理都蕴涵空集公理。